Three-dimensional fuse deposition modeling of tissue-simulating phantom for biomedical optical imaging.
نویسندگان
چکیده
Biomedical optical devices are widely used for clinical detection of various tissue anomalies. However, optical measurements have limited accuracy and traceability, partially owing to the lack of effective calibration methods that simulate the actual tissue conditions. To facilitate standardized calibration and performance evaluation of medical optical devices, we develop a three-dimensional fuse deposition modeling (FDM) technique for freeform fabrication of tissue-simulating phantoms. The FDM system uses transparent gel wax as the base material, titanium dioxide (TiO2 ) powder as the scattering ingredient, and graphite powder as the absorption ingredient. The ingredients are preheated, mixed, and deposited at the designated ratios layer-by-layer to simulate tissue structural and optical heterogeneities. By printing the sections of human brain model based on magnetic resonance images, we demonstrate the capability for simulating tissue structural heterogeneities. By measuring optical properties of multilayered phantoms and comparing with numerical simulation, we demonstrate the feasibility for simulating tissue optical properties. By creating a rat head phantom with embedded vasculature, we demonstrate the potential for mimicking physiologic processes of a living system.
منابع مشابه
Spectral Separation of Quantum Dots within Tissue Equivalent Phantom Using Linear Unmixing Methods in Multispectral Fluorescence Reflectance Imaging
Introduction Non-invasive Fluorescent Reflectance Imaging (FRI) is used for accessing physiological and molecular processes in biological media. The aim of this article is to separate the overlapping emission spectra of quantum dots within tissue-equivalent phantom using SVD, Jacobi SVD, and NMF methods in the FRI mode. Materials and Methods In this article, a tissue-like phantom and an optical...
متن کاملThree-dimensional gel dosimetry for dose volume histogram verification in compensator-based IMRT
Background: Some tissues in human body are radiobiologically different from water and these inhomogeneity must be considered in dose calculation in order to achieve an accurate dose delivery. Dose verification in complex radiation therapy techniques, such as intensity‐modulated radiation therapy (IMRT) calls for volumetric, tissue equivalent and energy independent dosimeter. The purpose of this...
متن کاملEvaluation of Reflection Optical Imaging Characteristics Using Fluorescence with Near Infrared Wavelength at Different Depths of Tissue Equivalent Phantom
متن کامل
Three-dimensional, distendable bladder phantom for optical coherence tomography and white light cystoscopy.
We describe a combination of fabrication techniques and a general process to construct a three-dimensional (3-D) phantom that mimics the size, macroscale structure, microscale surface topology, subsurface microstructure, optical properties, and functional characteristics of a cancerous bladder. The phantom also includes features that are recognizable in white light (i.e., the visual appearance ...
متن کاملCalculation of total dose and dose equivalent distribution in the treatment of lung cancer using MR-guided carbon therapy
Nowadays, in order to improve the accuracy of treatment in radiation therapy, there are many attempts to use magnetic resonance imaging (MRI) due to the advantages of excellent soft tissue contrast and ultra-fast pulse sequences. On the other hand, carbon-ion radiation therapy is developing rapidly due to the benefits of greater relative biological effectiveness (RBE) and the application in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 20 12 شماره
صفحات -
تاریخ انتشار 2015